Cross-scene hyperspectral image classification combined spatial-spectral domain adaptation with XGBoost

نویسندگان

چکیده

é’ˆå¯¹è·¨åœºæ™¯é«˜å ‰è°±é¥æ„Ÿå›¾åƒåˆ†ç±»ä¸­æºåŸŸå’Œç›®æ ‡åŸŸçš„é¢‘è°±åç§»é—®é¢˜ï¼Œæå‡ºä¸€ç§ç»“åˆç©ºè°±åŸŸé€‚åº”ä¸Žæžåº¦æ¢¯åº¦æå‡æ ‘ï¼ˆeXtreme Gradient Boosting, XGBoostï¼‰çš„è·¨åœºæ™¯é«˜å ‰è°±å›¾åƒåˆ†ç±»æ¨¡åž‹ã€‚å°†æ·±åº¦è¶ å‚æ•°å·ç§¯æ¨¡åž‹ï¼ˆDepthwise Over-parameterized Convolution Model,DOCMï¼‰å’Œå¤§æ ¸æ³¨æ„åŠ›ï¼ˆLarge Kernel Attention,LKAï¼‰ç»“åˆï¼Œæž„æˆç©ºè°±æ³¨æ„åŠ›æ¨¡åž‹ï¼Œæå–æºåŸŸç©ºè°±ç‰¹å¾ã€‚åˆ©ç”¨ç›¸åŒçš„ç©ºè°±æ³¨æ„åŠ›æ¨¡åž‹å¯¹ç›®æ ‡åŸŸè¿›è¡Œç‰¹å¾æå–ï¼Œå¹¶ä¸Žé‰´åˆ«å™¨å®Œæˆå¯¹æŠ—åŸŸé€‚åº”ï¼Œå‡å°‘æºåŸŸä¸Žç›®æ ‡åŸŸä¹‹é—´çš„é¢‘è°±åç§»ï¼›é€šè¿‡ç›®æ ‡åŸŸä¸­å°‘é‡æœ‰æ ‡ç­¾æ•°æ®å¯¹ç›®æ ‡åŸŸç‰¹å¾æå–å™¨è¿›è¡Œæœ‰ç›‘ç£åŸŸé€‚åº”ï¼Œä½¿ç›®æ ‡åŸŸç‰¹å¾æå–å™¨è¿›ä¸€æ­¥å­¦ä¹ ç›®æ ‡åŸŸçš„çœŸå®žåˆ†å¸ƒï¼Œå¹¶å¯¹æºåŸŸå’Œç›®æ ‡åŸŸçš„ç‰¹å¾è¿›è¡Œæ˜ å°„ï¼Œå½¢æˆç›¸ä¼¼çš„ç©ºé—´åˆ†å¸ƒï¼Œå®Œæˆèšç±»åŸŸé€‚åº”ã€‚æœ€åŽï¼Œä½¿ç”¨é›†æˆåˆ†ç±»å™¨XGBoostè¿›è¡Œé«˜å ‰è°±å›¾åƒåˆ†ç±»ï¼Œè¿›ä¸€æ­¥æé«˜æ¨¡åž‹çš„è®­ç»ƒé€Ÿåº¦ä¸Žç½®ä¿¡åº¦ã€‚åœ¨Pavia和Indianaé«˜å ‰è°±æ•°æ®é›†ä¸Šçš„å®žéªŒç»“æžœè¡¨æ˜Žï¼Œæœ¬æ–‡ç®—æ³•çš„æ€»ä½“åˆ†ç±»ç²¾åº¦åˆ†åˆ«è¾¾åˆ°äº†91.62%和 65.98%ã€‚ç›¸æ¯”è¾ƒäºŽå ¶ä»–è·¨åœºæ™¯é«˜å ‰è°±å›¾åƒåˆ†ç±»æ¨¡åž‹ï¼Œæœ¬æ–‡æ‰€ææ¨¡åž‹å ·æœ‰æ›´é«˜çš„åœ°ç‰©åˆ†ç±»ç²¾åº¦ã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Spectral-Spatial Response for Hyperspectral Image Classification

This paper presents a hierarchical deep framework called Spectral-Spatial Response (SSR) to jointly learn spectral and spatial features of Hyperspectral Images (HSIs) by iteratively abstracting neighboring regions. SSR forms a deep architecture and is able to learn discriminative spectral-spatial features of the input HSI at different scales. It includes several existing spectral-spatial-based ...

متن کامل

Cross-domain CNN for Hyperspectral Image Classification

In this paper, we address the dataset scarcity issue with the hyperspectral image classification. As only a few thousands of pixels are available for training, it is difficult to effectively learn high-capacity Convolutional Neural Networks (CNNs). To cope with this problem, we propose a novel cross-domain CNN containing the shared parameters which can co-learn across multiple hyperspectral dat...

متن کامل

Spectral-Spatial Hyperspectral Image Classification With Edge-Preserving Filtering

The integration of spatial context in the classification of hyperspectral images is known to be an effective way in improving classification accuracy. In this paper, a novel spectralspatial classification framework based on edge-preserving filtering is proposed. The proposed framework consists of the following three steps. First, the hyper-spectral image is classified using a pixel-wise classif...

متن کامل

Spectral/Spatial Hyperspectral Image Compression

^Remote Sensing Signal and Image Processing Laboratory Department of Computer Science and Electrical Engineering University of Maryland, Baltimore County, Baltimore, MD 21250 ^Computer Science Department, University of Extremadura Avda. de la Universidad s/n,10.071 Caceres, SPAIN ^Center for Space and Remote Sensing Research Graduate Institute of Space Science Department of Computer Science and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Guangxue jingmi gongcheng

سال: 2023

ISSN: ['1004-924X']

DOI: https://doi.org/10.37188/ope.20233113.1950